-
linear equation
- $a_1x_1+a_2x_2+…+a_nx_n = b$
- $a$ 是 coefficient
- $x$ 是 variables
- $b$ 是 constant term
- $a_1x_1+a_2x_2+…+a_nx_n = b$
-
Systems of linear equations
-
m equations, n variables
-
$a_{11}x_1+a_{12}x_2+…+a_{1n}x_n = b_1\\ a_{21}x_1+a_{22}x_2+…+a_{2n}x_n = b_2\\ …\\ a_{m1}x_1+a_{m2}x_2+…+a_{mn}x_n = b_m$
-
solution
- $[s_1~s_2~…~s_n]^T$ 是一組解,代換到 $x_1$~$x_n$ 後滿足所有 equation 的向量
-
所有 Systems of linear equations 都有
- no solution
- exactly one solution
- infinitely many solutions
-
consistent/inconsistent
- 如果有一組以上的解就是 consistent
- 無解就是 inconsistent
-
equivalent
- 如果兩組 Systems of linear equations 的 solution set 一樣,稱為 equivalent
-
elementary row operations
- 不會影響 solution set
- types
- Interchange
- 兩 row 互換
- Scaling
- 某 row 乘某個 nonzero scalar
- Row addition
- 把某 row 乘某個 scalar 後加到某 row
- Interchange
- property
- 所有 elementary row operations 都是 reversible
- 用來求解
-
coefficient matrix
- $a_{11}x_1+a_{12}x_2+…+a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+…+a_{2n}x_n = b_2\\
…\\
a_{m1}x_1+a_{m2}x_2+…+a_{mn}x_n = b_m$
-
可以拆為 $Ax=b$
-
$A=\begin{bmatrix} a_{11}& a_{12}&…& a_{1n} \\ a_{21}& a_{22}&…& a_{2n} \\ …& …&…& … \\ a_{m1}& a_{m2}&…& a_{mn} \end{bmatrix}$
- A 就是 coefficient matrix
-
$x=\begin{bmatrix} x_1\\ x_2\\ …\\ x_n \end{bmatrix}$
- $x$ 是 variable vector
-
$[A|b]=\begin{bmatrix} a_{11}& a_{12}&…& a_{1n} & b_1 \\ a_{21}& a_{22}&…& a_{2n} & b_2\\ …& …&…& … & …\\ a_{m1}& a_{m2}&…& a_{mn} & b_m \end{bmatrix}$
- 叫做 augmented matrix
-
- $a_{11}x_1+a_{12}x_2+…+a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+…+a_{2n}x_n = b_2\\
…\\
a_{m1}x_1+a_{m2}x_2+…+a_{mn}x_n = b_m$
-